Computer Graphics III Light reflection \& BRDF Exercises

Jaroslav Křivánek, MFF UK
Jaroslav.Krivanek@mff.cuni.cz

Reflectance of a Lambertian surface

- Derive

$$
\rho_{d}=\pi \cdot f_{r, d}
$$

Irradiance environment mapping

- Let us assume a scene consisting of a single convex object with Lambertian (ideally diffuse) BRDF with a constant albedo (i.e. untextured). The object is illumination by an environment map.
- What quantity is sufficient to parameterize the outgoing radiance? That is, on which of the following quantities does the outgoing radiance depend and on which one it does not: $\mathbf{x}, \mathbf{n}_{\mathbf{x}}, \omega_{0}$?

The law of reflection

- Derive the following formula for the direction of the reflected ray

$$
\omega_{o}=2\left(\omega_{i} \cdot \mathbf{n}\right) \mathbf{n}-\omega_{i}
$$

Physically plausible Phong BRDF

- Derive the reflectance of the Phong BRDF for a viewing direction aligned with the surface normal:

$$
\rho^{\text {Phong modif }}\left(\omega_{o}\right)=\int\left[\frac{n+2}{2 \pi} \rho_{s} \cos ^{n} \theta_{\mathrm{r}}\right] \cos \theta_{\mathrm{i}} \mathrm{~d} \omega_{\mathrm{i}}, \quad \omega_{o}=0
$$

